Tetrahedren Letters No.47, pp. 4755-4758, 1967. Pergamon Press Ltd. Printed in Great Britain.

QUALITATIVE STRUCTURAL CHEMISTRY IN SOLUTION. THE COMPLETE R-VALUE

ANALYSIS OF SIX-MEMBERED RINGS

Joseph B. Lambert and Robert G. Keske¹

Department of Chemistry Northwestern University Evanston, Illinois 60201

(Received in USA 14 August 1967)

Electron diffraction, microwave spectroscopy, and X-ray crystallography have traditionally been the methods of choice for conformation-structure determination in the gas and the solid phases. Unfortunately lacking has been an adequate method for obtaining structural information in the isotropic liquid phase. Recently, we introduced a qualitative method for the assessment of certain aspects of the conformations of six-membered rings.² The original study was limited to molecules of the type I, in which the ratio (R) between the average J_{trans}

I

and the average J_{cis} was found to be diagnostic for the conformation of the ring and independent of the electronegativities of X and Y. The conclusions of the study are summarized in Table I.

TABLE I.

The Single R-Value Criteria

R=J _{trans} /J _{cis}	Conformation	φ _{ee} a
1.9-2.2	Cyclohexane-like chair	~60° ^b
> 2. 5	Puckered chair	< 60°
< 1.8	Flattened chair or flexible form	> 60°

^aThe dihedral angle between the vicinal equatorial protons. ^bIf cyclohexane had the diamond structure, this number would be exactly 60°; the actual value is probably somewhat larger.

Since the R value can only determine the dihedral relationships about the two $C_{\alpha}-C_{\beta}$ bonds, the conformation of the entire molecule cannot always be determined.² If, however, one considers the pentamethylene rings [II, $(CH_2)_5X$], spectral analysis of the appropriately deuterated species will yield two independent R values, one between the atoms of C_{α} and C_{β}

 $(R_{\alpha\beta}, \text{ from II-d}_2)$ and another between those of C_{β} and C_{γ} $(R_{\beta\gamma}, \text{ from II-d}_4)$. We have found that this pair of numbers may be conjoined to yield a nearly complete conformational description of the ring. In this preliminary account of our work, we describe the double R-value analysis of thiane³ (II, X = S) and 1,1-dibromotellurane²,⁴ (II, X = TeBr₂).

The synthesis of the 1, 5-dibrom opentane precursor of $II-d_2$ has been described previously.² Baeyer-Villiger oxidation of cyclopentanone-2, 2, 5, 5-d₄, followed by lithium aluminum hydride reduction of the resulting lactone, yields 1, 5-pentanediol-1, 1, 4, 4-d₄, which may be

converted to the dibromide progenitor of $II-d_4$. Spectra of thiane-d₂ and -d₄ and of 1, 1-dibromotellurane-d₂ and -d₄ were recorded at room temperature in dilute methylene chloride solution on a Varian A-60 spectrometer with simultaneous irradiation at the frequency of the deuterium resonance. Analysis of the AA'BB' patterns was accomplished by the method of Swalen and Reilly⁵ on the CDC-3400 computer with the Calcomp plotting accessory.

In Table II we have listed the spectral parameters determined at room temperature, for which ring inversion should be NMR-fast. The values of $R_{\alpha\beta}$ and $R_{\beta\gamma}$ for thiane are almost equal. Their magnitudes (~2.6) indicate that φ_{ee} has diminished somewhat all around the ring. This puckering distortion is the same as that described for dithiane;² previous data for thiane⁶ could not yield a clear conformational picture. For 1,1-dibromotellurane, $R_{\alpha\beta}$ is rather small

TABLE II.

	H_5 H_4 H_1 H_1		
	Thiane $(X = S)$	l, l-Dibromotellurane (X = TeBr ₂)	
Δν(α, β)	48.55 ± 0.1 hertz	88. 11 ± 0. 1 hertz	
Δν(β, _Y)	12.93	20.10	
$\Delta J_{gem}(\alpha, \beta)$	0.0	3.5 ^a	
∆J _{gem} (в, _v)	0.0	0.0	
$J_{13} = J_{24}$	3.26	5. 2 ^a	
$J_{14} = J_{23}$	8.51	7.8 ^a	
$J_{35} = J_{46}$	3.28	2, 56	
$J_{36} = J_{45}$	8.47	9.21	
R ₁	2.61	1.5	
R _{By}	2.58	3.60	

The Complete Analysis of Thiane and 1,1-Dibromotellurane

^aThe accuracy for these quantities is probably ± 0.2 hertz.

(1.5) and $R_{\beta\gamma}$ is quite large (3.6). The molecule has apparently assumed a conformation in which part of the ring is flattened and part is considerably puckered.

These two examples sorve to demonstrate the utility of the double R-value method. Criteria for differentiation among the various conformational possibilities for the pentamethylene rings may now be stated through enumeration of the expected R-value pairs. It should be recalled that, in general, any R value less than about 1.8 indicates a widening of φ_{ee} and (for the chair) a flattening of the ring, whereas a value greater than about 2.5 indicates a closing of φ_{ee} and a puckering of the ring. Four conformational classes may be delineated. (1) If both $R_{\alpha B}$ and R_{B_V} are 1.9-2.2, the ring is rather close to the "perfect chair" of cyclohexane. (2) If both quantities are considerably larger than 2.2, the ring is substantially puckered. (3) If $R_{\alpha\beta}$ is small, but $R_{\beta\gamma}$ large (or <u>vice versa</u>), part of the ring is flattened, and part puckered. (4) If both R values are small, the molecule is either "doubly flattened" or in the flexible family.⁷ Even though individual twist forms can have R values greater than 2.0, the averaging of dihedral angles through pseudorotation will always bring both $R_{\alpha\beta}$ and $R_{\beta\gamma}$ to less than 2.0.⁸ It was stated in the original work² that an R value less than 1.8 for I could not distinguish between the flattened chair and the flexible manifold. For molecules II, however, such a differentiation becomes possible by the above-outlined consideration of $R_{\beta\gamma}$.

Although these general rules can be utilized as diagnostics for conformational distortions, borderline cases will undoubtedly be encountered. The principal shortcoming of the R-value empiricism is that only the qualitative nature, and not a quantitative assessment of the distortions is available.⁹

<u>Acknowledgments</u>. This work was supported by the National Science Foundation (Grant GP-6611) and by the Petroleum Research Fund, administered by the American Chemical Society (Grant 2970-A4, 5). The authors are indebted to Dr. M. I. Levenberg of Abbott Laboratories for numerous 100-MHz spectra and to Dr. E. W. Garbisch, Jr., of the University of Minnesota for the generous use of his deuterium irradiation equipment.

REFERENCES

- 1. National Science Foundation Undergraduate Fellow, 1965-1967. Present address: Iowa State University, Ames, Iowa.
- 2. J. B. Lambert, J. Am. Chem. Soc., 89, 1836 (1967).
- 3. J. B. Lambert and R. G. Keske, J. Org. Chem., 31, 3429 (1966).
- 4. G. T. Morgan and H. Burgess, J. Chem. Soc., 324 (1928).
- 5. J. D. Swalen and C. A. Reilly, J. Chem. Phys., 37, 21 (1962).
- 6. J. B. Lambert, R. G. Keske, and D. K. Weary, J. <u>Am. Chem. Soc.</u>, <u>89</u> (in press).
- 7. The doubly flat form may invariably be unstable with respect to the twist forms.
- 8. To be convinced, one must examine models of the entire continuum, or fleet, or boat forms, then assign an R value to each of the six twist forms, and effect an averaging appropriate to the substitution on X.
- A method of conformational assessment has been described that is more quantitative, but less general than ours; see C. Altona, H. R. Buys, H. J. Hageman, and E. Havinga, <u>Tetrahedron</u>, 23, 2265 (1967).